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The possibility that crazing initiates within glassy occlusions in rubber particles of toughened glassy 
polymers has been explored theoretically. A micromechanical analysis of the stress distribution and 
of some craze initiation factors has been performed using an elementary, single particle model. The 
results show that this possibility falls within theoretical predictions, if dilation is assumed to be the 
dominant factor in craze initiation criteria. 

INTRODUCTION the composite particle. This possibility is of particular 
practical interest, because an appropriate design of the 

Toughening by inclusion of rubber particles in glassy poly- material would offer a means of absorbing energy within the 
mers is a well-consolidated technology. Whatever the heterophasic particles even before the matrix reaches the 
mechanism of yielding and fracture may be, the toughening critical point of its incipient failure. 
action is believed to be due to absorption of energy by the The aim of the present work is to explore this possibility 
composite material through internal crazing arising from theoretically using the elementary model presented in pre- 
stress concentrations induced by the soft rubber inclusions vious publications 3-s. 
(see, for example, refs 1 and 2). This phenomenon is gene- 
rally thought to be localized in the glassy matrix regions sur- 
rounding the rubbery particles. The model 

However, the particles themselves are known to be corn- The model assumed for the two phase rubbery particle 
posite, in turn occluding substantial amounts of glassy mate- embedded in the glassy polymer matrix 3-s is represented in 
rial. It is therefore of interest to investigate the effect that Figure 1. The component materials are postulated to be 
glassy sub-inclusions have on stress distribution and the role perfectly homogeneous, isotropic and linearly elastic, 
that they may play in craze initiation phenomena inside the neglecting any time-dependence of the viscoelastic properties. 
composite material. Using these assumptions, the only relevant material con- 

In previous papers 3-s we have carried out a micromecha- stants are the ratio between two elastic moduli, (say the 
nical analysis of an elementary, single-particle model of shear moduli G 1 and G2) and the Poisson ratios Ul and v 2 
rubber-toughened glassy polymers, in which the rubbery of the two compoennt materials, 1 and 2. Since the analysis 
particle had composite nature. The particle embedded in was carried out numerically, we had to assign specific values 
the glassy polymer matrix was assumed to be made of a single for these constants. Indicating the glassy polymer by index 1 
spherical glassy occlusion enveloped by a concentric, spheri- and the rubber by index 2, the following values were taken 3- s 
cal rubber shell. Thermal stresses induced by the two phase as characteristic of this pair of materials: G1/G 2 = 103, u 1 = 
particle 3, and the stress distribution in the matrix around the 0.35, v 2 = 0.49982 (the Poisson ratio of rubber, u2, being close 
particle under an applied uniaxial tension 4 were first analysed, to the limiting value of 0.5, is more critical and needs to be 
A number of different mechanical factors, which have fre- realistically specifiedg). Furthermore, perfect adhesion is pos- 
quently been thought to govern craze initiation, were then tulated at the interfaces of different materials. 
calculated s still under uniaxial tension and in the matrix The choice of this single-occlusion, single-particle model 
region surrounding the particle, where crazing is usually in relation to craze initiation was justified and extensively com 
thought to occur. Results showed that the highest values mented upon in ref 5. It may be worth recalling that while it 
of these factors in the matrix are found either at the pole sacrifices the multiplicity of sub-inclusions, it preserves other 
or at the equator of the particle s . topological features which may be envisaged as relevant in the 

A corresponding analysis may now be interesting for the real composite particle: discrete nature of sub-inclusion, con- 
glassy occlusion of the particle. It has been indicated that tinuity of rubber within the inclusion, embedding of sub- 
crazing may also occur within the glassy occlusions (or sub- inclusion in the rubber matrix. In this way, every phase of the 
inclusions) in high impact polystyrene when the fraction of material maintains its individual characteristics, and the local 
occluded polystyrene is high 6'7. Furthermore, a recent ex- analysis of crazing factors can be considered as being 
perimental investigation s points to the possibility that meaningful. 
crazes initiate at the sub-inclusion/rubber interface within It may also be worth recalling that the hypothesis of 
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Uniform uniaxial tension at infinity While the location of the maximum of each of the factors 
t I t I t I t I I I t t I I t t I t I t I in the sub-inclusion does not vary, whatever the relative size 

~ of sub-inclusion and inclusion, the values of the maxima de- 
pend on b/a. These values, normalized with respect to the 
corresponding values at infinity, are reported as a function of 
b/a in Figure 2, together with the values of the absolute 
maxima in the matrix region surrounding the particle, for 

: comparison. 
: For every factor examined, except dilation, the maximum 

Matrix value inside the glassy sub-inclusion is constantly lower 
than the maximum value outside the particle, over the en- 
tire b/a range. 

Dilation, however, shows an inversion at b/a = "0.88: in 
EquatOrs inclusion the lower range of b/a a higher (equatorial) maximum is 

reached in the matrix, while for b/a > 0.88 the maximum at 
the pole of the sub-inclusion overcomes the one in the 
matrix. As a consequence, every criterion of craze initiation 

~ W  i i i  'ndus'°n based °n dilati°n w°uld make it p°ssible f°r crazing t° °ccur 
firstly inside the glassy occlusion, if its relative size were 
sufficiently high. 

] 
.................. ................... ................................................... .......................................... CONCLUSIONS 

:: :: :~ :~:: :~i In spite of the simplicity of the elementary model of com- 
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ posite rubber particle assumed, interesting indications 

..... Glassy polymer ~ " ~ - ~ i  Rubber emerge from the present analysis. 
(1) The possibility that crazing can initiate inside the 

Figure I Elementary model assumed for a single, composite rubbery composite rubber particles, w i th in  the glassy domains o f  
particle embedded in glassy polymer matr ix  material occluded, indicated by experiment, falls 

w i th in  theoretical predictions based on the assumption that 
di lat ion is the dominant factor o f  craze ini t iat ion. 

(2) Should this possibi l i ty become substantiated by gene- 
linear elasticity makes the analysis valid up to the point of in- ral experimental evidence, criteria based on dilation would 
cipient craze formation at best, so that when crazing takes become apparent as the most appropriate for predicting craze 
place at some site, the hypothesis of linear elastic behaviour initiation phenomena. 
throughout the composite material fails, and the correct mean- The present results are controlled by specific values of 
ing of the analysis is lost. the material constants. It seems interesting to extend the 

analysis to a number of combinations of different values, 
covering a spectrum of realistic cases. This work is in 

RESULTS AND DISCUSSION progress. 

The craze initiation factors examined are listed in the first 
column of Table 1. The reader is referred to our previous 
paper s and to the original papers quoted therein for an ex- Table 1 Location of  maxima of  d i f ferent craze init iat ion factors as a 
planation of the craze initiation criteria involving these funct ion of  b/a* 
factors. 

Each of these can be expressed in terms of stress or strain Sub-inclusion Matrix 
tensor components. For the convenience of the reader, the (This paper) (Previous paper s ) 

relevant general relations and the basis for the calculation in b/a Location b/a Location 
the specific case of the model system here considered are 
given in the Appendix.  Each of  the factors examined was Maximum principal 0-1 Pole 0-1 Equator 
computed at any point inside and the glassy sub-inclusions, stress, Oma x 
at di f ferent ratios b/a of  the radii o f  sub-inclusion and inclu- Maximum principal 0-1 Centre 0-0.93 Equator 
sion, respectively. For any given value of bin in the interval strain, ema x 0.93--1 Pole 
0 < b/a < 1, the spatial distribution of each craze initiation Dilation, A 0--1 Pole 0--1 Equator 

(Total) strain energy 0--1 Centre 0-0 .91  Equator 
factor was displayed by drawing a contour level map of its density, W s 0.91-1 Pole 
values on a generic meridian plane of the model. Maximum principal 0--1 Centre 0 -0 .91  Equator 

These maps showed that maxima occurring in the shear stress, ~'rnax 0.91-1 Pole 
craze in i t ia t ion factors happen to be localized either at the Distortion energy 0-1 Centre 0-0.90 Equator 
centre or at the pole of the sub-inclusion, as reported in density, W D 0.90--1 Pole 

Table 1. For comparison, in the same Table the location of * Ratio of the shear elastic moduli of the two component 
the maxima of  the same factors in the glassy matr ix  (at the materials G I /G2  = 10 3, Poisson's ratio of  the glassy polymer v I = 
i nc lus ion-mat r ix  interface) is also indicated s. 0.35, Poisson's ratio of the rubber v 2 = 0.49982 
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Figure 2 Maxima of the maximum principal stress, ama x, maximum principal strain, ema x, dilation, A, total strain energy density, WS, 
maximum principal shear stress, rma x, and distortion energy density, HID, in the glassy sub-inclusion (full lines) and in the glassy matrix around 
the particle (broken lines: heavy-absolute maximum, light-relative maximum) as function of ratio b/a of the radii of the sub-inclusion and of the 
inclusion, respectively 

R E F E R E N C E S  r2 = 1/21o2 - o31 
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3 Pavan, A. and Ricc6, T. J. Mater Sci. 1976, 11, 1180 
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1977, 108, 33 
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9 Bohn, L. Angew. Makromol. Chem. 1971, 20, 129 where E and v denote  the Young 's  modulus  and the 

10 Goodier, J. N. J. Appl. Mech. 1933, 55, 39 Poisson's ratio, respectively,  of  the material  at the same 
11 Matonis, V. A. and Small, N. C. Polym. Eng. ScL 1969,9,90 point.  
12 Wang, T. T. and Schonhorn, H. J. Appl. Phys. 1969, 40, 5131 We then call: 

APPENDIX Omax = m a x ( o l ,  o2, o3) 

emax = m a x ( e l ,  e2, e3) 
I f  Ol, o 2, 03 denote  the principal stresses, r 1, r 2, r 3 the 
principal shear stresses, and e l ,  e2, e3 the principal strains at 7"max = max(7"1, 7"2, 7"3) 
a point ,  the fol lowing general relat ions hold:  

The dilation A the total  strain energy density W S, and the 

r l  = 1/21Ol _ 021 dis tor t ion energy density W D can be expressed as: 
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A = el + e2 + e3 Using Goodier's work on a single spherical domain l°, the 
general solution of  the field equations of elasticity (or other- 

W S = (1/2E).  [ - v ( o  I + o2 + o3) 2 + (1 + v)(o 2 + o22 + 02)] wise the non-zero stress tensor components as well as the 
non-zero displacements at a point) can be expressed in the 

W o = (1/3 G)-(r l  2 + r 2 + r 2) present case (two concentric spherical domains) through 
twelve constants to be determined from continuity condi- 

where G denotes the shear elastic modulus of the material, tions at the interfaces 11'12,4. This requires the solution of a 
The evaluation of the quantities Oma x, ema x, rmax, A, set of twelve equations which can be practically performed 

W S and W D implies that the stress tensor components are numerically using a digital computer. 
first computed. In our case, it is convenient to assume a 
spherical coordinate system (r, 0, ~O) with its origin at the 
centre of the particle and the polar axis coincident with the 
symmetry axis (oriented as the applied stress direction). It 
turns out that the only non-zero stress tensor components 
are Orr, Ooo, o¢4 ,  frO and these are related to the principal ACKNOWLEDGEMENT 
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